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Fractures are common in all kinds of geological environments

Fractures

-accommodate large strains in the upper crust
-weaken the rocks

-assist fluid, mass and heat transfer

-exert strong control on mineralization




Fractures exert strong control on mineralization

Cashin Mine, SW Colorado, USA.
Photo from Ali Jaffri (Applied Stratigraphix)



Fluid flow modelling in joints/fractures
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Road map

Fractures

O Acquisition of joint roughness data | |

Fracture surface
measurements

L

Fracture surface
characterization

¢

- I Fracture flow and heat
\ | transport modeling
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Fracture flow and heat
transport characterization

o Characterization of joints with
plumose patterns

o 3D fracture flow modeling and
characterization in joints

o 3D heat transport modeling and
characterization in joints




Acquisition of joint roughness data
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Location of the sample for
laboratory measurement

* Joint in Turonian glauconitic sandstones (mean grain size 0.1 mm)
* S-type plumose
* Klieve quary, southern Munsterland



Acquisition of joint roughness data

Terrestrial LIDAR FARO® Laser Scanner Focus3P X 330.

Four LiDAR scans at 2 to 3 m distance of the joint surface.

Two scans at the same LiDAR position, very low resolution and quality
scan (preview) to define the scan area of the high resolution and
quality scans (full space scans would result in too large files, i.e. 710
Mpts, tens GB).

The two high resolution and quality scans limited to the joint and close
surroundings:

Resolution 1/1 (40960 pt/360°)
Quality 3x (244 kpt/s)
File sizes 800 MB (42.5 Mpts) and 1 GB (65 Mpts)



Acquisition/processing of joint roughness data: 3D point cloud

Volumetric density resulted in 1251 points/cm?® with minimum and
maximum volumetric densities of 426 and 4267 points/cm? respectively



Numerical modelling of fluid and heat transfer through a
fracture with realistic geometry
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Numerical modelling of fluid and heat transfer through a
fracture with realistic geometry
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Nigon et al. (2019, 2024)
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The quartz veins of Panasqueira Mine, Portugal
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Studied geological objects

The quartz veins of Panasqueira Mine, Portugal




Results Vein inversion

a) Vein attitudes

b) Inverted stress axes

(with 95% confidence regions) %) Inuened el diagram

Pascal et al. (2022)




Results DETERMINING 3D GEOMETRIES OF NATURAL HYDROFRACTURES,
PANASQUEIRA MINE, CENTRAL PORTUGAL

Shatlow-dipping quartz veins,
ST TSNS 3

S LY ; Z

Example of mineralised vein (~50 cm thick)

Mineralised veins on two consecutive pillars, note branching points
Point cloud of one stope, distance between each corridor is ~10 m and complex propagation path of the initial hydrofracture




Summary

Structural geology has entered a digital revolution
involving technologies, which allow for fast acquisition
and processing of data with unprecedented detail.

However, the outcomes of these powerful methods will
always need to be controlled by traditional mapping and
the human eye/brain.
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Characterization of joint roughness
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2 Multi-directional joint surface

1 correlation length in mm based on

0 normalized autocovariance analyses
1 after planar detrending: (a) at the 1-
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dm-scale, (b) at the 6-cm-scale and (c)
three magnifications of typical multi-
directional correlation length plots (A,
B and C) at the 6-cm-scale. The joint
surface topography is derived from
LiDAR measurements.
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Nigon et al. (2017)

19

Figure 10b)
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Nigon et al. (2019)
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Fluid flow modelling: results

mmm= Standard
deviation

Ap:1mm,X2,std = 2.3e-03m e 1
: Pressure (Pa)
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Fractures assist fluid, heat and solute transfer

Fluid-rock interaction, Amadorio, Spain

N i 1 Dholakia et al. (1998).
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